
Тестування
програмного
забезпечення

Викладач: к.т.н. Шитікова Олена Вікторівна

ВВЕДЕННЯ
Тестування програмного забезпечення – процес

дослідження, випробування програмного продукту, який

має дві різні мети:

– продемонструвати розробникам та замовникам, що

програма відповідає вимогам;

– виявити ситуації, в яких поведінка програми є

невірною, небажаною або не відповідає специфікації.

ВВЕДЕННЯ
Мета дисципліни: створити підґрунтя для

ознайомлення з концепціями тестування програмного

забезпечення: тестування вебпроєктів, зручності

використання, кросбраузерне тестування, функціональне

тестування, технічне тестування тощо.

Завдання дисципліни: ознайомитись з методами та

засобами тестування програмного забезпечення,

підходами проведення різноманітних видів тестування.

ВВЕДЕННЯ
У результаті вивчення навчальної дисципліни студент

повинен знати:

• життєвий цикл звітів, розстановку пріоритетів та їх

обробку;

• загальне уявлення про інструментарій тестувальника

(система відслідковування помилок, система управління

проєктами, інструменти автоматизації та інше);

• основи функціонального тестування;

• дослідне тестування;

ВВЕДЕННЯ
та вміти:

• чітко визначати мету тестування;

• створювати баг-репорти, проводити спостереження та аналіз

результатів тестування;

• розробляти та працювати з необхідною тестовою

документацією;

• аналізувати, планувати та проводити різні види тестування;

• тестувати вебдодатки;

• перевіряти повноту вимог, їх несуперечливість, дублювання;

• перевіряти різні аспекти якості;

• тощо.

Структура курсу
Тема 1. «Вступ. Тестування програмного забезпечення»

 Лабораторна робота № 1 – Створення баг-репортів

Тема 2. «Види тестування»

 Лабораторна робота № 2 - Види тестування

Тема 3. «Вебтестування та чек-лісти»

Тема 4. «Кросбраузерне тестування»

 Лабораторна робота № 3 – Вебтестування,

чек-лісти та кросбраузерне тестування

Тема 5. «Тестування зручності використання»

 Лабораторна робота № 4 - Тестування зручності

використання

Тема 6. «Тестування вебпроєктів»

Структура курсу
Тема 7. «Технічне тестування»

 Лабораторна робота № 5 - Технічне тестування

Тема 8. «Функціональне тестування»

 Лабораторна робота № 6 – Функціональне тестування

Тема 9. «Тест-дизайн, тест-кейси, техніки тест-дизайну»

 Лабораторна робота № 7 – Тест-дизайн, тест-кейси

Тема 10. «Тест-плани»

Тема 11. «Звіти про тестування»

Тема 12. «Мобільне тестування»

Тема 13. «Тестування ігор»

Тема 14. Ролі у процесі розробки ПЗ. Комунікації у сфері

тестування

Підсумковий контроль – залік (диференційований)

Підсумковий бал з дисципліни
«Тестування ПЗ»

Підсумкова оцінка з дисципліни враховує бали, отримані здобувачем

за виконання лабораторних робіт та за підсумковий контроль у вигляді

тесту:

де Qдис – рейтингова оцінка з дисципліни;

 Qі – бали за виконання і-тої лабораторної роботи;

 Qтест – бали за підсумковий тест.

 ЛР1, ЛР2 ... ЛР7 – лабораторні роботи

Лабораторні роботи та підсумкове тестування Підсум. бал

ЛР1 ЛР2 ЛР3 ЛР4 ЛР5 ЛР6 ЛР7 Тест Qтест

10 10 10 10 10 10 20 20 100

Лекція 1
Вступ: Тестування

програмного
забезпечення

Історія розвитку тестування
програмного забезпечення

Перші програмні системи розроблялися в рамках

програм наукових досліджень або програм для потреб

міністерств оборони.

1960-ті – «вичерпне» тестуванню, яке мало

проводитися з використанням усіх шляхів у коді або всіх

можливих вхідних даних.

На початку 1970-х тестування ПЗ позначалося як

«процес, спрямований на демонстрацію коректності

продукту» або як «діяльність по підтвердженню

правильності роботи ПЗ».

Історія розвитку тестування
програмного забезпечення

У другій половині 1970-х тестування уявлялося, як

виконання програми з наміром знайти помилки, а не

довести, що вона працює. Успішний тест – це тест, який

виявляє раніше невідомі проблеми.

У 1980-х до тестування додалося таке поняття, як

попередження дефектів. Проєктування тестів – найбільш

ефективний з відомих методів попередження помилок.

У середині 1980-х з’явилися перші інструменти для

автоматизованого тестування.

Історія розвитку тестування
програмного забезпечення

На початку 1990-х в поняття «тестування» стали

включати планування, проєктування, створення, підтримку і

виконання тестів і тестових оточень, і це означало перехід

від тестування до забезпечення якості, що охоплює весь

цикл розробки ПЗ.

У середині 1990-х з розвитком інтернету і розробкою

великої кількості вебдодатків особливу популярність

здобуває «гнучке тестування».

У 2000-х з’явилося ще більш широке визначення

тестування, коли до нього було додано поняття «оптимізація

бізнес-технологій» (business technology optimization, BTO).

Особливості та вимоги до професії
тестувальника (Tester)

Обов’язки тестувальника:

• контроль якості розроблюваних продуктів;

• планування тестування та всіх необхідних видів робіт;

• виявлення та аналіз помилок і проблем, що виникають у

користувачів при роботі з програмними продуктами;

• розробка сценаріїв тестування;

• документування знайдених дефектів;

• складання технічної документації (найчастіше англійською

моваю на рівні Upper Intermediate);

• розробка автотестів та їх регулярний прогін (при

необхідності і наявності відповідних знань).

Основні поняття і терміни

Баг та атрибути бага

Існує кілька визначень терміна «Баг» (bug):

− дефект, помилка в програмі або в системі, яка

видає несподіваний або невірний результат;

− відхилення фактичного результату (actual result) від

очікуваного результату (expected result).

Баг-репорт (Bug Report) – це документ, що описує

ситуацію або послідовність дій, яка призвела до

некоректної роботи об’єкта тестування, із зазначенням

причин і очікуваного результату.

Атрибути багів

− номер бага в системі (bug number);

− серйозність (severity) – це технічна категорія, яка

визначає критичність багу з точки зору тестувальника:

особливість, помилка в тексті, дрібна проблема, значна

проблема, падіння продукту, проблема блокуючого

характеру:

• критичний (critical):

 критичний системний збій (crash);

 втрата даних (data loss);

 проблема з безпекою (security issue);

Атрибути багів

• значний (major):

 сайт «зависає» (site hangs);

 баг блокує кодування, тестування або

використання вебсайту (blocker);

• помірний (minor):

 функціональні проблеми (functional bugs);

• косметичний (cosmetic):

 косметична проблема (cosmetic problem)

 normal;

 trivial;

Атрибути багів

− пріоритет (priority) – пріоритет, з яким проблема

повинна бути виправлена – також є показником

важливості бага для бізнесу компанії:

• immediate;

• urgent;

• high;

• normal;

• low;

Атрибути багів

− короткий опис (summary) – це максимально

інформативний і стислий опис проблеми;

– опис (description) – корисна інформація про баг: опис,

коментарі, нюанси;

– кроки відтворення (steps to reproduce) – конкретні

кроки для відтворення проблеми;

– прикріплення (attachment) – будь-яка інформація, яка

допоможе відтворити ситуацію (скріншоти, відео, лог-

файл);

– додаткова інформація (операційна система, браузер

+ версія, мобільний пристрій).

Тестування та мета тестування

Тестування програмного забезпечення (Software

Testing) – це перевірка відповідності між реальною та

очікуваною поведінкою програми, яка здійснюється на

кінцевому наборі тестів, обраному певним чином.

У більш широкому сенсі, тестування – це одна з

технік контролю якості, що включає в себе активності з:

• планування робіт (Test Management),

• проєктування тестів (Test Design),

• виконання тестування (Test Execution)

• аналіз отриманих результатів (Test Analysis).

Тестування та мета тестування

Верифікація (Verification) – це процес оцінки системи

або її компонентів, метою якого є визначення того, чи

задовольняють результати поточного етапу розробки

умовам, сформованим на початку цього етапу [IEEE].

Валідація (Validation) – це визначення відповідності

ПЗ, що розробляється, очікуванням і потребам

користувача, вимогам до системи [BS7925-1].

Спільне та відмінності процесів
тестування, верифікації, валідації
Верифікація (Verification) Валідація (Validation)

це статична практика перевірки
документів, дизайну, архітектури,
коду, тощо.
1)включає перевірку планів,
специфікацій вимог, специфікацій
дизайну, коду, тест-кейсів, чек-лістів
тощо
2)завжди проходить без запуску коду.
3)використовує методи – reviews,
walkthroughs, inspections тощо
4)відповідає на питання “Чи робимо
ми продукт правильно?”
5)допоможе визначити, чи є
програмне забезпечення високої
якості, але воно не гарантує, що
система корисна. Перевірка пов’язана
з тим, що система добре спроєктована
і безпомилкова.
6)відбувається до Валідації

це процес оцінки кінцевого продукту.
Перевіряє, чи відповідає програмне
забезпечення очікуванням і вимогам
клієнта. Це динамічний механізм
перевірки та тестування фактичного
продукту
1) завжди включає в себе запуск коду
програми.
2) використовує методи, такі як
тестування Black Box, тестування White
Box і нефункціональне тестування.
3) відповідає на питання “Чи робимо
ми правильний продукт?”
4) перевіряє, чи відповідає програмне
забезпечення вимогам і очікуванням
клієнта.
5) може знайти помилки, які процес
Верифікації не може зловити
відбувається після Верифікації

На практиці, відмінності верифікації та валідації мають

велике значення:

– замовника цікавить більше валідація (задоволення

власних вимог);

– виконавця хвилює не тільки дотримання всіх норм якості

(верифікація) при реалізації продукту, а й відповідність всіх

особливостей продукту бажанням замовника.

Приклад: Перевірка вебформи.

Верифікація: перевіряємо наявність полів. Всі поля повинні

відповідати специфікації. Їх наявність визначено макетами.

Необхідна інформація вноситься в ТЗ або до мокапів. Також

перевіряється, що поля всі робочі, в них можливо ввести різні

дані згідно найменувань.

Валідація: перевіряємо інформацію, що вводиться в поля та

її відповідність специфікації.

Спільне та відмінності процесів
тестування, верифікації, валідації

Тестування та мета тестування
Інцидент (Test Incident) – будь-яка подія,

спостереження, знайдене в рамках тестування, що

вимагає дослідження.

Звіт щодо інциденту (Incident Report) – документ,

що описує подію, яка відбулася під час тестування, і яку

необхідно досліджувати.

Звіт про запит на зміну (Improvement Report) –

документ, що описує пропозицію про вдосконалення

продукту. Включає в себе детальний опис пропозиції та

обґрунтування внесення змін до програмного

забезпечення.

Тестування та мета тестування
План тестування (Test Plan) – це документ, що описує

весь обсяг робіт з тестування, починаючи з опису об’єкта,

стратегії, розкладів, критеріїв початку і закінчення тестування,

до необхідного в процесі роботи обладнання, спеціальних

знань, а також оцінки ризиків з варіантами їх дозволу.

Тестовий випадок (Test Case) – це сукупність кроків,

конкретних умов і параметрів, необхідних для перевірки

реалізації тестованої функції або її частини.

Мета тестування – це знаходження багів до того, як їх

знайдуть користувачі.

Системи відслідковування помилок
та життєвий цикл дефекту

Система відслідковування помилок (Bug Tracking

System) – це прикладна програма, розроблена, щоб

допомогти розробникам програмного забезпечення

(програмістам, тестувальникам та ін.) враховувати й

контролювати помилки і неполадки, знайдені в програмах,

побажання користувачів, а також стежити за процесом

усунення цих помилок і виконання або невиконання

побажань.

Системи відслідковування помилок
та життєвий цикл дефекту

Баг-трекер (bug tracker) – система обліку та

відстеження помилок, яка дозволяє:

− створювати;

− зберігати;

− переглядати;

− модифікувати інформацію про баги.

Сучасні системи відслідковування
помилок

1. Mantis Bug Tracking System – вільно

розповсюджувана система відслідковування помилок у

програмних продуктах (bug tracker). Забезпечує взаємодію

розробників з користувачами (тестувальниками). Дозволяє

користувачам заводити повідомлення про помилки й

відстежувати подальший процес роботи над ними з боку

розробників. Система має гнучкі можливості конфігурації,

що дозволяє настроювати її не тільки для роботи над

програмними продуктами, але і в якості системи обліку

заявок для технічної підтримки.

Сучасні системи відслідковування
помилок

2. Redmine – відкритий серверний вебдодаток для

управління проєктами і завданнями (у тому числі, для

відстеження помилок). Redmine написаний мовою Ruby і

являє собою додаток на основі широко відомого

вебфреймворку Ruby on Rails.

Redmine надає наступні можливості:

• ведення декількох проєктів;

• гнучка система доступу, заснована на ролях;

• система відслідковування помилок;

• діаграми Ганта і календар;

• ведення новин проєкту, документів і управління

файлами;

Сучасні системи відслідковування
помилок

• оповіщення про зміни за допомогою RSS-потоків і

електронної пошти;

• вікі (wiki) для кожного проєкту;

• форуми для кожного проєкту;

• облік тимчасових витрат;

• настроюються довільні поля для інцидентів,

тимчасових витрат, проєктів і користувачів;

• створення записів про помилки за отриманими листами;

• можливість самостійної реєстрації нових

користувачів;

• багатомовний інтерфейс;

• підтримка СУБД MySQL, PostgreSQL, SQLite, Oracle.

Сучасні системи відслідковування
помилок

3. Atlassian JIRA – комерційна система

відслідковування помилок, призначена для організації

спілкування з користувачами, хоча в деяких випадках

систему можна використовувати для управління

проєктами. Розроблено компанією Atlassian Software

Systems. Назву системи (JIRA) отримано шляхом усічення

слова «Gojira», японського імені монстра Годзилла, що, в

свою чергу, є відсиланням до назви конкуруючого продукту

– Bugzilla. JIRA створювалася для заміни Bugzilla і багато

в чому повторює її архітектуру. Система дозволяє

працювати з декількома проєктами. Для кожного з проєктів

створює і веде схеми безпеки і схеми оповіщення.

Життєвий цикл дефекту

