Chapter 3

Histograms: Looking at the Distribution of the Data

Histogram

- A Picture of a list of numbers

Data	
11	15
8	26
10	5
15	

- BARS ARE HIGH when many elementary units fall within this range
- Shows typical value (center), dispersion (variability), distribution shape, outliers (if any)

Histogram

- A Picture of a list of numbers

- BARS ARE HIGH when many elementary units fall within this range
- Shows typical value (center), dispersion (variability), distribution shape, outliers (if any)

Slide

Distribution Shapes (Ideal)

- Normal
- Symmetric
- Bell-Shaped

- Skewed
- Not symmetric
- Can cause trouble
- Transform? Logarithm?

- Bimodal
- Two clear groups
- Find out why!
- Analyze separately?

$\underbrace{\text { Idealized Normal Distributions }}_{\substack{\text { siue } \\ 3.5}}$

- Can shift center, width (diversity) of distribution
- In idealized form, without the randomness of data

$\sin _{\substack{\text { sile } \\ 3.8}}$ Data from a Normal Distribution

- All are sampled from the same idealized normal distribution. Note the random differences.

Elsevier/Academic Press

${ }_{\substack{\text { sinde } \\ 3 \rightarrow 7}}^{\substack{\text { Example: Mortgage Interest Rates } \\ \hline}}$
 Fig 3.2.1

- Values from about 4.0% to 5.4%
- Typical: from about 4.2% to 4.8%
- Diversity among institutions
- Special feature: gap from 4.8% to 5.2%

Histogram and Bar Chart

- Histogram is a bar chart of the frequencies of the data
- Histogram: bar height represents number of cases within the range
- Ordinary bar chart: bar height represents data value for just one case
- Histogram shows overall distribution
- Histogram: the "big picture" of patterns in the data
- Ordinary bar chart: often too much detail (each individual case)

$\substack{\text { sile } \\ 3.9}$ Histogram and Bar Chart for Salaries

Fig 3.2.2-3

- Histogram shows patterns in the frequencies
- Ordinary Bar chart shows all cases individually
- For large data sets, histogram is much more useful

Elsevier/Academic Press
© Andrew F. Siegel, 2016

$\underbrace{}_{\substack{\text { slue } \\ \text { s.10 }}}$ Idealized Skewed Distributions

- Not symmetric
- Various shapes are possible
- In idealized form, without the randomness of data

Slide

3-11

Example: Bank Deposits

Fig 3.4.2

- Most banks are smaller: tall bars at the left
- A few banks are larger (to the right)
- A skewed distribution

Slide

3-12

Bimodal Distribution

Fig 3.5.1

- Two distinct groups in the data (ask "why?")
- Example: Corporate Bonds rated AA and B
- Low-risk bonds have a lower yield
- High-risk bonds entice investors with a higher yield

0
0
0
0
0
0
0
0
0
0
0

Yield

Outlier

- A data value very different from the others
- Difficult to see distribution of most of the data, even after changing histogram scale

Defects	
11	19
23	15
18	19
13	268
25	9

Outlier: What to Do?

- Note the outlier. If error, then fix it
- (Perhaps) analyze with and without outlier(s)
- If similar answers, then no problem
- OK to omit outlier(s) IF not part of situation under study
- e.g., Lab analysis, dropped test tube
- OK to omit, if studying normal operation, not laboratory accidents
- e.g., Statistical audit, "special occurrence" error
- Use care. Such an error in a sample may represent other "explainable" errors in accounts that were not examined

${ }_{\substack{\text { silde } \\ 3.15}}$ Example: Software CEO Compensation

Fig 3.6.1, 4

- One CEO (Ellison of Oracle) made $\$ 56.81$ million
- Removing this outlier, we can see more detail

$\underbrace{\text { Data Mining Promotions Received }}_{\substack{\text { silde } \\ 3.16}}$
 Fig 3.7.1

- Number of promotions received by 20,000 people in the donations database

Slide

3-17

More Detail in Promotions

Fig 3.7.2

- Reduce bar width from 10 to 1 promotion
- With large data set, can see interesting structure
- such as the peak at about 15 promotions

Slide

3-18

Data Mining Donations

Fig 3.7.3

- Size of donation received in response to mailing
- Note: many donations of $\$ 0$ among these 20,000
- Difficult to see anything else! (six donated \$100)

Slide
3-19

More Detail in Donations

Fig 3.7.4

- Keep only the 989 who donated (eliminate \$0)
- to see detail among those who made a gift
- Can now see the distribution of the gift amounts

Slide
 3-20
 Even More Detail in Donations

Fig 3.7.5

- With so much data (989 people)
- we can use smaller bars to see more details
- Note the "spikes" at $\$ 5,10,15,20,25$, and 50

